The Engel Group at The University of Chicago

The Engel Group strives to exploit femtosecond dynamics to steer and to control excited state reactivity. We use a combination of ultrafast spectroscopy, theory, synthesis, and biophysics to approach this problem.

Revealing Nature's Designs

Nature has had 2.4 billion years to evolve and engineer excited state dynamics. From photosynthesis to vision to photoenzymes, we examine natural mechanisms to steer excited states. Our goal is to isolate and identify new design principles to control quantum dynamics.

Steering Excited State Dynamics

Electronic excited states carry enough energy to make and break chemical bonds. Photochemistry operates manifestly outside the Born-Oppenheimer regime -- thereby escaping our standard chemical intuition. We seek new strategies to steer excited states and to control their reactivity.

Seeing the Unseen

You can't engineer what you can't see. We build new spectroscopic tools to probe femtosecond dynamics of electronic excitations. In living cells, protein complexes, and small molecules, we capture how these systems evolve with unprecedented depth and specificity.

Teaching Award 5/18/2016

Congratulations to Sara Hess on winning the Nathan Sugarman Teaching Award from the Department of Chemistry.

Ph.D. 5/12/2016

Congratulations to Dr. Ved Singh on successfully defending his dissertation!

Travel Grant 5/12/2016

Congratulations to John Otto on receiving a travel grant to attend a Gordon Research Seminar on Molecular Dynamics and Spectroscopy this summer where he will give an oral presentation.

Quantum Biology

Quantum Biology

Ultrafast Spectroscopy

Ultrafast Spectroscopy

Quantum Materials

Quantum Materials

Photocatalysis

Photocatalysis

Theory

Theory

Coherent Dynamics

Coherent Dynamics

Light Harvesting Materials

Light Harvesting Materials

Ultrafast Chiral Response

Ultrafast Chiral Response

Live Cell Studies

Live Cell Studies

M.L. Flanagan, P.D. Long, P.D. Dahlberg, B.S. Rolczynski, S.C. Massey, and G.S. Engel, "Mutations to R. sphaeroides Reaction Center Perturb Energy Levels and Vibronic Coupling but Not Observed Energy Transfer Rates" JPC A, 120 1479-1487 2016.

C. She, I. Fedin, D.S. Dolzhnikov, P.D. Dahlberg, G.S. Engel, R.D. Schaller, D.V. Talapin, "Red, Yellow, Green, and Blue Amplified Spontaneous Emission and Lasing Using Colloidal CdSe Nanoplatelets" ACS Nano. 2015.

P.D. Dahlberg, G.J. Norris, C. Wang, S. Viswanathan, V.P. Singh, and G.S. Engel , "Communication: Coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy" J. Chem. Phys. 143, 101101 2015.

V. P. Singh, M. Westberg, C. Wang, P. D. Dahlberg, T. Gellen, A. T. Gardiner, R. J. Cogdell, and G. S. Engel, "Towards quantification of vibronic coupling in photosynthetic antenna complexes" J. Chem. Phys. 142, 212446 2015.

Y. Zheng, S. Oh, F.H. Alharbi, G.S. Engel, and S. Kais, "Delocalized quantum states enhance photocell efficiency" Phys. Chem. Chem. Phys. 17, 5743-5750 2015.